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1. Background 

Over 460 million people in the world have disabling hearing loss which can make day to day 

communication and life very difficult[1]. In particular, the deaf are not able to respond to auditory 

information like warnings and alarms as well as suffering from mental health issues which is 

serious problem. Current solutions that address these problems have pitfalls themselves that 

prevent them from being accessible. Lip Reading and American Sign Language are incredibly 

dependent on visual cues and take a long time to learn how to interpret them accurately.[2] Other, 

more technical solutions, such as hearing aids and cochlear implants, are prevented from being 

accessible because of their high purchase and maintenance costs and risky surgical 

procedures.[3][4] 

2. Objective 

The purpose of this project is to implement an embedded device that allows those who are 

hearing-impaired to have access to auditory information without visual distraction.  

3. Proposition 

For the hearing-impaired, the best way to receive information without visual interaction is 

through touch, or haptic technology. A novel device could be developed to transcribe speech to 

tactile messages to be recognized. To allow for ease of use and portability, the whole solution is 

designed to be compact enough to fit in an embedded device, eventually the size of a 

smartwatch. Through further research and development, it became clear that several technologies 

(speech recognition, haptic feedback device) needed to be integrated together to create a 

functioning solution. 
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4. Implementation 

Fig 1. The end-to-end data flow from sound input to haptic feedback device. 

 

The top-level functions that need to be implemented are: 

1) Microphone input to audio file 

2) Audio file to character sequence 

3) Character Sequence to haptic feedback 

4.1 Sound recording/Pre-processing 

In a real environment, the target speech is always mixed with background noise. A noise removal 

technique has to be implemented to get large enough signal to noise ratio[5]. Taking into 

consideration aspects such as logarithmic frequency perception, an operation is performed to find 

the mel-frequency cepstral coefficients(MFCCs) of each sound. MFCCs take into account that 

the sounds generated by a human are filtered by the shape of the vocal tract including tongue, 

teeth etc. which manifests itself in the envelope of the short time power spectrum, and the job of 

MFCCs is to accurately represent this envelope[6]. This allows the program to represent complex 

speech with a simple array.  

4.2 ANN-Based Speech recognition 

For computers, recognizing speech is much more complex than simply identifying patterns and 

sounds[7]. Speech is extremely variable--different people speak in different ways. ANNs would 

allow us to tackle a lot of these problems by mimicking a biological neural network, allowing it 

to ‘learn’ how to deal with issues like variation in accents, pauses, tone, and volume[8]. 
4.2.1 Key Elements of implementing ANN 

● Code Framework: Tensorflow 

● Platform: Laptop with i7-6700HQ  processor, 16G of RAM, and a NVIDIA 970M GPU 
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● OS: Ubuntu 16.04 x64 

● Datasets: LibriSpeech Corpus, contains 100 hours of speech and is free to use[9]. 

4.2.2 Development of application programs 

The programs coded to setup and train ANN models are as follows: 

Name Description 

tf_model.py Python script containing the network architecture construction and network 
training loop Has dataset loading and preprocessing functions 

denoise.sh Bash script that removes background noise from audio via sound profiling 

braille_util.py Python script that converts character sequences to a [2,3] array of on/offs. 
Also manages GPIO interfacing 

gpiostates.py Python script that manages the pilot light and state locking 

init.sh Bash script that serves as a master function that spawns necessary child 
processes to process data and gets an output 

load_meta.py Python script that loads ANN from saved model ‘.meta’ and runs 
preprocessed data through the loaded model 

 

4.2.3 Model Architecture Evaluation: After intensive research and evaluation, only the 

following key components are chosen to limit the complexity and size of the ANN for embedded 

applications 

Feature Used Reason 

LSTM - ANN 
cell body 

Yes The LSTM serves as the ‘brain’ of the ANN, processing all of the 
inputs. They are a subset of cells called RNNs that have ‘temporal 
memory,’ which allow them to excel at tasks like sequence 
labelling and speech recognition[10]. Having 2 layers and 256 
hidden units allowed the LSTM to achieve an acceptable level of 
abstraction and accuracy without sacrificing too much run time. 

CTC- Output 
and Cost 

Yes CTC serves as an output function and cost function for the ANN. 
Instead of a vector of possibilities, it outputs a sequence of labels 
expressed as probability distributions. CTCs are widely used in 
training LSTMs and RNNs, where they excel in cases like speech 
recognition, where timing is variable[11]. 
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RMSProp – 
Optimizer 

Yes The optimizer in a neural network is responsible for updating the 
parameters in the ANN depending on the output of the cost 
function. It is based on the Adagrad optimizer, which adapts its 
learning rate based on how frequent parameters are being updated. 
RMSProp is different in which it tries to tackle Adagrad's radically 
diminishing learning rates[11]. An initial learning rate of 1e-4 and γ, 
which controls the rate of decay, was set to be 0.9. 

Greedy Decoder 
- CTC decoder 

Yes Because CTC models its outputs on a sequence of probability 
distributions of all possible labels, I implemented the Greedy 
Decoder, which only searches for the most probable path. 
Compared to the Beam Search algorithm, this provides a 
substantial boost in runtime at the cost of a small loss in 
accuracy[13]. 

Batch 
Normalization 

No Added instabilities in the training process and crashed too often. 

Regularization No Layer Normalization, Dropout, and L2 Regularization didn’t 
improve performance as network never overfit the dataset. 

Bi-directionality No The computational cost was too high as it requires too much 
memory. 

FCLayers No The computational cost was too high when relative performance is 
taken into account 

Different 
Optimizers 

No RMSProp, after extensive experimentation, worked better than 
other available ones like ADAM, ADAGRAD, ADADELTA, 
Momentum, and Stochastic Gradient Descent 

 

4.2.4 ANN Data Flow Design and Implementation  
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There are 5 main steps that data go through when running data through an ANN. 

1) Pre-processing 

Compute 13 MFCCs, replacing first MFCC with RMSE, and 1st Derivatives into a numpy array 

of size [timesteps, 26] 

2) Running the ANN 

a) Run each timestep and concatenate it with the previous timestep’s output 

b) Forget Gate - Decide how much of the previous cell state to keep. 

c) Cell Update Gate - Update the current cell state. 

d) Output Gate - Get cell output. 

3) CTC Decoder 

Find the most likely set of sequence labels using CTC Greedy Decoder and return it as a 

character sequence 

4) Compute CTC loss 

Compares target sequence and predicted sequence and outputs cost 

5) Optimize gradients 

Update weights through the RMSProp optimizer based on the computed CTC Loss 

5. Character Sequence to Haptic Feedback 

Braille code was chosen to present haptic feedback devices due to it being small, easy to learn, 

and easy to implement. As a proof of concept, a 2x3 solenoid array was used to display tactile 

Braille. The character sequences are encoded into Braille using a short Python script, then sent to 

the GPIO pins to drive 6 solenoids. Additional Darlington transistors were also used to provide 

required voltage and current to drive the solenoids.  

5.1 Embedded platform selection 

As a proof of concept, the commercial Raspberry Pi 2B+ is used as the embedded platform for 

the following reasons: 

● Linux software stack allows for easy transfer of pre-trained Tensorflow models 

● Multiple GPIO ports for driving solenoids 

6. Data and Results 

6.1 ANN Performance Metrics 

Two different metrics were used to measure the performance of the ANN over the training 

period. 
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1) Cost - Defined as the negative natural log of the probability to correct classification of a label 

in every possible search path[11]. 

2) Label Error Rate - defined as the total Levenshtein distance over total characters of a 

batch[6][11]. 

The ANN achieved an accuracy of 74.77% on the training set and 71.50% on the test set after 

training for approximately 37 epochs or 44 hours and 10 minutes. This is comparable to 

Google’s Speech Recognition API in 2013, which claims to have achieved an accuracy of 

77.00%[14]. 

6.2 ANN Trends 

Over the training period, there were a few notable 

observations. 

1) The model underfits the data, showing high bias and low variance. The complexity of the 

ANN wasn’t enough to capture the level of abstraction. 

2) Because noise wasn’t added to the test set, we can infer that the network becomes more 

robust to noise as training goes on as the performance of the train and test set converges over 

time. 

3) The improvements to both the LER and cost functions decrease exponentially. Due to lack of 

available time and resources, the network training was stopped before overfitting. 

7. Conclusion 

A prototype speech to Braille embedded device has been successfully created by integrating and 

innovatively fusing: 

● Various pre-processing techniques such as MFCC and de-noising 

● ANN-based speech recognition on the Tensorflow framework 

● Self-built solenoid-driven haptic feedback system displaying braille 

● Embedded Linux based Software and Hardware environment 
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The ANN worked well for the time spent training and the complexity of the network. Accuracy 

could be improved in real-world applications by adding more random noise to the training 

process[15]. The hardware aspect served to be a functional prototype and demonstrated essentially 

everything that the end model needed to. Overall, this project was successful in accomplishing 

my original goal of creating an alternative method of receiving communication for the deaf that 

is independent of visual cues. 

8. Appendix 

8.1 Acronyms 
ANN - Artificial Neural Network 

RNN - Recurrent Neural Network 

LSTM - Long-short Term Memory Cell 

CTC - Connectionist Temporal Classification 

LER - Label Error Rate 

MFCC - Mel-frequency Cepstral Coefficient 

GPIO - General Purpose Input / Output 

RMSProp - Root Mean Squared Propagation 

RMSE - Root Mean Squared Energy 
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